Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 612(7938): 170-176, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36265513

RESUMO

Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life1,2. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals3-7. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses8-21. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A122,23. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics24,25, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.


Assuntos
Microscopia Crioeletrônica , Fosfatos de Dinucleosídeos , Antagonistas do Ácido Fólico , Ácido Fólico , Nucleotídeos Cíclicos , Animais , Humanos , Fosfatos de Dinucleosídeos/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Mamíferos/metabolismo , Nucleotídeos Cíclicos/metabolismo , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura
2.
J Genet ; 982019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31544789

RESUMO

In view of the documented association of solute carrier family 19 member 1 (SLC19A1) G80A (R27H) polymorphism with the risk for different types of cancers and systemic lupus erythematosus (SLE), we have reanalysed the case-control study on breast cancer to ascertain the conditions in which this polymorphic variant exerts the risk of breast cancer. Association statistics have revealed that this polymorphism exerts the risk for breast cancer under the conditions of low folate intake, and in the absence of well-documented protective polymorphism in cytosolic serine hydroxymethyltransferase. To substantiate this observation, we have developed a homology model of SLC19A1 using glycerol-3-phosphate transporter (d1pw4a) as a template where 73% of the residues were modelled at 90% confidence while 162 residues were modelled ab initio. The wild and mutant proteins shared same topology in S3, S5, S6, S7, S11 and S12 transmembrane domains. The topology varied at S1 (28-43 residue vs 28-44 residue), S2 (66-87 residue vs 69-87 residue), S4 (117-140 residue vs 117-139 residue), S8 (305-325 residue vs 305-324 residue), S9 (336-356 residue vs 336-355residue), and S10 (361-386 residue vs 361-385 residue) transmembrane domains between wild versus mutant proteins. S2 domain is shortened by three amino acid residues in the mutant while in other domains the difference corresponds to one amino acid residue. The 3DLigandSite analysis revealed that the metallic-ligand-binding sites at 273Trp, 277Asn, 379Leu, 439Phe and 442Leu are although unaffected, there is a loss of active sites corresponding to nonmetallic ligand binding. Tetrahydrofolate and methotrexate have lesser affinity towards the mutant protein than the wild protein. To conclude, the R27H polymorphism affects the secondary and tertiary structures of SLC19A1 with the significant loss in ligand-binding sites.


Assuntos
Neoplasias da Mama/genética , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/genética , Antiporters/química , Sítios de Ligação/genética , Estudos de Casos e Controles , Simulação por Computador , Ácido Fólico/metabolismo , Glicina Hidroximetiltransferase/metabolismo , Humanos , Metotrexato/química , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/química , Polimorfismo Genético , Estrutura Secundária de Proteína/genética , Estrutura Terciária de Proteína/genética , Fatores de Risco
3.
Biochemistry ; 57(49): 6780-6786, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30452231

RESUMO

The folate antagonist methotrexate is a cytotoxic drug used in the treatment of several cancer types. The entry of methotrexate into the cell is mediated by two main transport systems: the reduced folate carrier and membrane-associated folate receptors. These transporters differ considerably in their mechanism of (anti)folate uptake, substrate specificity, and tissue specificity. Although the mechanism of action of the reduced folate carrier is fairly well-established, that of the folate receptor has remained unknown. The development of specific folate receptor-targeted antifolates would be accelerated if additional mechanistic data were to become available. In this work, we used two fluorescently labeled conjugates of methotrexate, differently linked at the terminal groups, to clarify the uptake mechanism by folate receptor-α. The results demonstrate the importance of methotrexate amino groups in the interaction with folate receptor-α.


Assuntos
Receptor 1 de Folato/metabolismo , Antagonistas do Ácido Fólico/metabolismo , Metotrexato/análogos & derivados , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Transporte Biológico Ativo , Linhagem Celular Tumoral , Endocitose , Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Receptor 1 de Folato/química , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Humanos , Metotrexato/química , Metotrexato/metabolismo , Modelos Biológicos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/metabolismo
4.
J Mol Graph Model ; 81: 125-133, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550744

RESUMO

All clinically used antifolates lack transport selectivity for tumors over normal cells resulting in dose-limiting toxicities. There is growing interest in developing novel tumor-targeted cytotoxic antifolates with selective transport into tumors over normal cells via the proton-coupled folate transporter (PCFT) over the ubiquitously expressed reduced folate carrier (RFC). A lack of X-ray crystal structures or predictive models for PCFT or RFC has hindered structure-aided drug design for PCFT-selective therapeutics. Four-point validated models (pharmacophores) were generated for PCFT/Activity (HBA, NI, RA, RA) and RFC/Activity (HBD, NI, HBA, HBA) based on inhibition (IC50) of proliferation of isogenic Chinese hamster ovary (CHO) cells engineered to express only human PCFT or only RFC. Our results revealed substantial differences in structural features required for transport of novel molecules by these transporters which can be utilized for developing transporter-selective antifolates.


Assuntos
Desenvolvimento de Medicamentos , Antagonistas do Ácido Fólico/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Transportador de Folato Acoplado a Próton/química , Proteína Carregadora de Folato Reduzido/química , Animais , Células CHO , Cricetulus , Antagonistas do Ácido Fólico/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Relação Quantitativa Estrutura-Atividade , Reprodutibilidade dos Testes
5.
PLoS One ; 9(12): e114903, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25506935

RESUMO

An essential step in the discovery of molecular mechanisms contributing to disease phenotypes and efficient experimental planning is the development of weighted hypotheses that estimate the functional effects of sequence variants discovered by high-throughput genomics. With the increasing specialization of the bioinformatics resources, creating analytical workflows that seamlessly integrate data and bioinformatics tools developed by multiple groups becomes inevitable. Here we present a case study of a use of the distributed analytical environment integrating four complementary specialized resources, namely the Lynx platform, VISTA RViewer, the Developmental Brain Disorders Database (DBDB), and the RaptorX server, for the identification of high-confidence candidate genes contributing to pathogenesis of spina bifida. The analysis resulted in prediction and validation of deleterious mutations in the SLC19A placental transporter in mothers of the affected children that causes narrowing of the outlet channel and therefore leads to the reduced folate permeation rate. The described approach also enabled correct identification of several genes, previously shown to contribute to pathogenesis of spina bifida, and suggestion of additional genes for experimental validations. The study demonstrates that the seamless integration of bioinformatics resources enables fast and efficient prioritization and characterization of genomic factors and molecular networks contributing to the phenotypes of interest.


Assuntos
Mutação , Proteína Carregadora de Folato Reduzido/genética , Disrafismo Espinal/genética , Criança , Feminino , Ácido Fólico/metabolismo , Genômica/métodos , Humanos , Modelos Moleculares , Gravidez , Conformação Proteica , Proteína Carregadora de Folato Reduzido/química , Proteína Carregadora de Folato Reduzido/metabolismo , Software , Disrafismo Espinal/metabolismo
6.
Curr Top Membr ; 73: 175-204, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24745983

RESUMO

This chapter focuses on the biology of the major facilitative membrane folate transporters, the reduced folate carrier (RFC), and the proton-coupled folate transporter (PCFT). Folates are essential vitamins, and folate deficiency contributes to a variety of heath disorders. RFC is ubiquitously expressed and is the major folate transporter in mammalian cells and tissues. PCFT mediates intestinal absorption of dietary folates. Clinically relevant antifolates such as methotrexate (MTX) are transported by RFC, and the loss of RFC transport is an important mechanism of MTX resistance. PCFT is abundantly expressed in human tumors and is active under pH conditions associated with the tumor microenvironment. Pemetrexed (PMX) is an excellent substrate for PCFT as well as for RFC. Novel tumor-targeted antifolates related to PMX with selective membrane transport by PCFT over RFC are being developed. The molecular picture of RFC and PCFT continues to evolve relating to membrane topology, N-glycosylation, energetics, and identification of structurally and functionally important domains and amino acids. The molecular bases for MTX resistance associated with loss of RFC function, and for the rare autosomal recessive condition, hereditary folate malabsorption (HFM), attributable to mutant PCFT, have been established. From structural homologies to the bacterial transporters GlpT and LacY, homology models were developed for RFC and PCFT, enabling new mechanistic insights and experimentally testable hypotheses. RFC and PCFT exist as homo-oligomers, and evidence suggests that homo-oligomerization of RFC and PCFT monomeric proteins may be important for intracellular trafficking and/or transport function. Better understanding of the structure and function of RFC and PCFT should facilitate the rational development of new therapeutic strategies for cancer as well as for HFM.


Assuntos
Transportador de Folato Acoplado a Próton/metabolismo , Proteína Carregadora de Folato Reduzido/metabolismo , Animais , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Humanos , Transportador de Folato Acoplado a Próton/química , Proteína Carregadora de Folato Reduzido/química
7.
Eur J Histochem ; 55(1): e3, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21556118

RESUMO

The reduced folate carrier (Rfc1; Slc19a1) mediated transport of reduced folates and antifolate drugs such as methotrexate (MTX) play an essential role in physiological folate homeostasis and MTX cancer chemotherapy. As no systematic reports are as yet available correlating Rfc1 gene expression and protein levels in all tissues crucial for folate and antifolate uptake, storage or elimination, we investigated gene and protein expression of rat Rfc1 (rRfc1) in selected tissues. This included the generation of a specific anti-rRfc1 antibody. Rabbits were immunised with isolated rRfc1 peptides producing specific anti-rRfc1 antiserum targeted to the intracellular C-terminus of the carrier. Using RT-PCR analysis, high rRfc1 transcript levels were detected in colon, kidney, brain, thymus, and spleen. Moderate rRfc1 gene expression was observed in small intestine, liver, bone marrow, lung, and testes whereas transcript levels were negligible in heart, skeletal muscle or leukocytes. Immunohistochemical analyses revealed strong carrier expression in the apical membrane of tunica mucosa epithelial cells of small intestine and colon, in the brush-border membrane of choroid plexus epithelial cells or in endothelial cells of small vessels in brain and heart. Additionally, high rRfc1 protein levels were localized in the basolateral membrane of renal tubular epithelial cells, in the plasma membrane of periportal hepatocytes, and sertoli cells of the testes. Taken together, our results demonstrated that rRfc1 is expressed almost ubiquitously but to very different levels. The predominant tissue distribution supports the essential role of Rfc1 in physiological folate homeostasis. Moreover, our results may contribute to understand antifolate pharmacokinetics and selected organ toxicity associated with MTX chemotherapy.


Assuntos
Regulação da Expressão Gênica , Proteína Carregadora de Folato Reduzido/química , Animais , Células Cultivadas , Cães , Eletroforese em Gel de Poliacrilamida , Imuno-Histoquímica , Rim/química , Rim/citologia , Rim/metabolismo , Masculino , Coelhos , Ratos , Ratos Sprague-Dawley , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...